
Monte Carlo renormalization group study of crosslinked polymer chains on fractals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 1365

(http://iopscience.iop.org/0305-4470/31/5/007)

Download details:

IP Address: 171.66.16.104

The article was downloaded on 02/06/2010 at 07:21

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) 1365–1372. Printed in the UK PII: S0305-4470(98)85496-6

Monte Carlo renormalization group study of crosslinked
polymer chains on fractals
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Abstract. We study the problem of two crosslinked polymer chains in a good solvent, modelled
by two mutually crossing self-avoiding walks situated on fractals that belong to the Sierpinski
gasket (SG) family (whose members are labelled by an integerb, 2 6 b 6 ∞). By applying
the Monte Carlo renormalization group (MCRG) method, we calculate the critical exponenty

associated with the number of crossings of the two self-avoiding-walk paths, for a sequence of
SG fractals with 26 b 6 100. For the problem under study, we find that our MCRG approach
provides results that are virtually rigorous, that is, results with exceptionally small deviations (at
most 0.07%) from the available (26 b 6 5) exact renormalization group results. We discuss
our set of MCRG data fory as a function of the fractal parameterb, and compare its behaviour
with the finite-size scaling predictions.

1. Introduction

The self-avoiding walk (SAW) is a random walk that must not contain self-intersections. It
has been extensively used as a model of a linear polymer chain in a good solvent. Although
an isolated chain is difficult to observe experimentally (even at high polymer dilution),
numerous studies of single-chain statistics have been upheld as an essential step towards
understanding more challenging many-chain systems. A simple-minded extension of the
single polymer concept is the model of two chains in a solvent (good for both chains)
[1] whose properties can be also investigated by studying statistics of two SAWs on a
lattice. However, the corresponding investigations are difficult because of the presence of
interchain interactions. In this paper we study the case of two chemically different polymers
that have a pronounced crosslinking interaction. Such a situation can be modelled by two
mutually crossing self-avoiding walks (MCSAW), that is, by two SAWs whose paths on a
lattice can cross (intersect) each other, which, in the case of two-dimensional SAWs, can be
associated with two entangled wigglers (on a tabletop) that can cross over each other. With
each crossing we may associate the contact energyεc, and, in analogy with the problem
of polymer interaction with a penetrable surface [2], we may assume that with decreasing
temperature the number of crossingsM increases so that at the critical temperatureTc it
behaves according to the power law

M ∼ Ny (1)

whereN is the total number of monomers in the longer chain. BelowTc the number of
crossings becomes proportional toN , whereas aboveTc it is vanishingly small.
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The problem of two chemically different polymers in a good solvent has been extensively
studied experimentally [3–5] and theoretically. Various theoretical techniques have been
applied, including the random phase approximation [1, 6–8], renormalization group (RG)
methods [9–12], field theoretical approach [13] and Monte Carlo simulations [14], to study
models of the polymer system on Euclidean lattices. However, in spite of these numerous
different studies of the polymer problem in the case of the Euclidean lattices, the entire
physical picture achieved so far is of a phenomenological character and, for example, there
is no exact result for the contact critical exponenty. For this reason, it is desirable to extend
the relevant study to a family of fractal lattices whose members allow, in principle, exact
treatment of the problem and whose characteristics approach (via the so-called fractal-to-
Euclidean crossover) properties of a Euclidean lattice. Moreover, the study of the polymer
problem on fractal lattices has its own practical importance because real containers of
the polymer solvent are in many cases porous media that are often fractals, which means
that they display self-similar distribution of voids (obstacles) over three to four orders of
magnitudes in length scale.

The case of a single polymer chain or, more precisely, asymptotic properties of SAWs,
on the first member (labelled byb = 2) of the infinite Sierpinski gasket (SG) fractal family
was studied by means of an exact RG approach in the pioneering work of Dhar [15]. This
exact study was later extended [16] to the case of a finite sequence (36 b 6 8) of the SG
family. In an analogous way, Kumar and Singh [17, 18] have recently studied the polymer
problem described by the MCSAW model situated on the SG family of fractals. They have
applied an exact RG approach, in the case of the first four (26 b 6 5) members of the
infinite SG family of fractals, to calculate the contact exponenty, while for the fractal-to-
Euclidean crossover region, that is, for largeb members of the SG fractal family, they have
propounded a finite-size scaling approach formula fory.

In this paper we exploit the Monte Carlo renormalization group (MCRG) method to
calculate the contact critical exponenty for the MCSAW model situated on the SG fractals.
We have obtainedy for a long sequence of the SG fractals, that is, for 26 b 6 100.
Comparing our results for 26 b 6 5 with the exact RG results [17, 18], we find that
there is no deviation larger than 0.07% and, for this reason, we can accept the entire set of
MCRG results as very reliable. Details of the performed MCRG calculations are explained
in section 2. In section 3 we present an overall discussion of our findings within the
framework of the current knowledge of the properties of two interpenetrating polymers.

2. The MCRG approach

In this section we are going to apply the MCRG method to the MCSAW model on the
SG family of fractals. These fractals have been studied in numerous papers so far, and
consequently we shall give here only a requisite brief account of their basic properties. It
starts with recalling the fact that each member of the SG fractal family is labelled by an
integerb > 2 and can be constructed in stages. At the first stage (r = 1) of the construction
there is an equilateral triangle (generator) that containsb2 identical smaller triangles of unit
side length, out of which only the upper oriented are physically present. The subsequent
fractal stages are constructed recursively, so that the complete self-similar fractal lattice is
obtained in the limitr →∞. Therefore, the fractal dimension of the complete SG fractal
appears to bedf = ln[b(b + 1)/2]/ ln b.

In the terminology that applies to the SAW, we assign the weightx1 to a step of one
SAW and the weightx2 to a step of the other walk. In order to explore effects of crosslinking
of two SAWs on the SG fractals, we introduce the two Boltzmann factorsw = e−εc/T and
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t = e−εt/T , whereεc is energy of two monomers in contact (which occurs at a crossing site
of SAWs), whileεt is the energy associated with two sites which are nearest neighbours to
a crosslinked site and which are visited by different SAWs (see figure 1). Here we set the
Boltzmann constantkB equal to unity.

Figure 1. The b = 4 fractal generator with segments of two different SAW chains (two
different polymers) depicted by open and full circles. The two SAWs cross each other at the
three sites (marked by small full circles within bigger open circles), with which we associate the
interaction energyεc. The dotted bonds indicate interaction, with energyεt, between different
sites (monomers) which are nearest neighbours to crosslinked points. Thus, for example, the
presented two-SAW configuration should contribute the weightx6

1x
6
2w

3t2 in the corresponding
RG equations (more specifically, in equation (5) forr = 0).

Important aspects of the statistics of the two-chain polymer system, described by the
MCSAW model, can be learnt by introducing four restricted partition functionsB

(r)

1 , B(r)2 ,
C(r), andD(r), that are depicted in figure 2. The recursive nature of the fractal construction
imply the following recursion relations for the restricted partition functions

B
(r+1)
1 =

∑
NB1

BNB1
(B

(r)

1 )NB1 (2)

B
(r+1)
2 =

∑
NB2

BNB2
(B

(r)

2 )NB2 (3)

C(r+1) =
∑

NB1 ,NB2 ,NC,ND

CNB1 ,NB2 ,NC,ND
(B

(r)

1 )NB1 (B
(r)

2 )NB2 (C(r))NC (D(r))ND (4)

D(r+1) =
∑

NB1 ,NB2 ,NC,ND

DNB1 ,NB2 ,NC,ND
(B

(r)

1 )NB1 (B
(r)

2 )NB2 (C(r))NC (D(r))ND (5)

where the coefficientsBNB1
(and equallyBNB2

), CNB1 ,NB2 ,NC,ND
, andDNB1 ,NB2 ,NC,ND

are not
functions ofr, and each of them represents the number of ways in which the corresponding
parts of the two-SAW configuration, within the (r + 1)th stage fractal structure, can be
comprised of the two-SAW configurations within the fractal structures of the next lower
order. Because of the independence ofr, these coefficients can be calculated by studying
all mutually crossing SAW paths within the fractal generator only.

The above set of relations (2)–(5), can be considered as the RG equations for the
problem under study, with the corresponding initial conditions:B(0)1 = x1, B(0)2 = x2,
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Figure 2. A schematic representation of the four basic restricted partition functions (for an
rth stage fractal structure) used to construct all possible configurations of two chain polymers
described by the MCSAW model. Monomers of one polymer are depicted by open circles, while
monomers of the other polymer are depicted by full circles.

C(0) = x1x2w
2, andD(0) = x1x2wt . On physical grounds, one can expect that these RG

equations should have three relevant fixed points (B∗1, B
∗
2, C

∗,D∗) of the type (B∗, B∗, 0, 0),
(B∗, B∗, (B∗)2, (B∗)2), and (0, 0, B∗, 0) [17]. The first fixed point withC∗ = 0 andD∗ = 0,
due to the meaning of these quantities (see figure 2), describes the segregated phase of two
chain polymers that should be expected in the high-temperature region. Conversely, the third
fixed point, withB∗1 = B∗2 = 0 andD∗ = 0, describes the polymer entangled state, which
should appear at low temperatures. Finally, the second fixed point (withB∗1 = B∗2 = B∗ and
C∗ = D∗ = (B∗)2) describes the state of the two-polymer system that occurs at the critical
temperatureT = Tc when segregated and entangled polymer phases become identical. This
fixed point appears to be a tricritical point, which may be verified by studying numerically
the behaviour of the pertinent derivatives of the singular part of the free energy, in the same
way as has been carried out in the case of the single polymer adsorption problem on fractal
lattices [19–21]. In what follows we focus our attention on the tricritical fixed point in order
to calculate the contact critical exponenty. It should be observed that equations (2) and (3),
for eachb, have only one non-trivial fixed point valueB∗ [19], which thereby completely
determines the tricritical fixed point.

Calculation of the contact critical exponenty starts with solving the eigenvalue problem
of the RG equations (2)–(5) linearized at the tricritical fixed point. Hereafter, we are going
to use the prime symbol as a superscript for the (r + 1)th restricted partition functions and
no indices for therth-order partition functions. In proceeding further it should be noticed
that the RG equations (2) and (3) have identical structure and, in addition, they are not
coupled with the other two RG equations, which implies that the eigenvalue problem can
be separated into two parts. The first part of the eigenvalue problem, related to equation (2)
(or (3)) gives the eigenvalue of the end-to-end distance critical exponent (ν = ln b/ ln λν)

λν = ∂B ′1
∂B1

∣∣∣∣∗ = ∂B ′2
∂B2

∣∣∣∣∗ (6)
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where the asterisk denotes that the derivatives should be taken at the tricritical fixed point.
The second part of the eigenvalue problem reduces to solving the equation∣∣∣∣∣∣

(
∂C ′
∂C
− λ

)
∂C ′
∂D

∂D′
∂C

(
∂D′
∂D
− λ

)
∣∣∣∣∣∣
∗

= 0 (7)

which, in general, gives two additional eigenvalues for eachb, but in practice it turns out
that only one of them (to be denoted byλy from now on) is relevant (λy > 1). Knowing
λy , we can determine the critical exponenty [17] through the formula

y = ln λy
ln λν

. (8)

Hence, in an exact RG evaluation ofy one needs to calculate partial derivatives of
sums (2)–(5), and thereby one should find the coefficientsBNB1

, BNB2
, CNB1 ,NB2 ,NC,ND

,
andDNB1 ,NB2 ,NC,ND

by an exact enumeration of all possible SAWs for each particularb,
which has been accomplished [17, 18] for the SG fractals withb 6 5. However, for largeb
the exact enumeration turns out to be a forbidding task. We have circumvented this problem
by applying the MCRG method. Within this method, the first step would be to locate the
tricritical fixed point. To this end, we may observe that the results obtained in [22, 23]
provide information for bothB∗ andλν for a sequence with 26 b 6 100. Accordingly,
the next step in the MCRG method consists of findingλy without explicit calculation of the
RG equation coefficients.

To solve the partial eigenvalue problem (7), so as to learnλy , we need to find the
requisite partial derivatives. These derivatives can be related to various averages of the
numbersNC and ND of different crossings of the SAWs for various two-SAW (two-
polymer) configurations that correspond to the restricted partition functionsC(r) andD(r)

(see figure 2). For instance, starting with (4) (in the notation that does not use the
superscripts (r + 1) andr) and by differentiating it with respect toC we get

∂C ′

∂C
=

∑
NB1 ,NB2 ,NC,ND

NCCNB1 ,NB2 ,NC,ND
(B1)

NB1 (B2)
NB2 (C)NC−1(D)ND . (9)

Now, it is convenient to think ofC ′ as the grand canonical partition function for the ensemble
of all possible two SAWs that start at the lower left vertex of the generator and exit at the
lower right vertex. With this concept in mind, we can write the corresponding ensemble
average

〈NC(B1, B2, C,D)〉C ′ = 1

C ′
∑

NB1 ,NB2 ,NC,ND

NCCNB1 ,NB2 ,NC,ND

×(B1)
NB1 (B2)

NB2 (C)NC (D)ND (10)

which can be directly measured in a Monte Carlo simulation. Combining (9) and (10) we
can express the requisite partial derivative in terms of the measurable quantity

∂C ′

∂C
= C ′

C
〈NC(B1, B2, C,D)〉C ′ . (11)

In a similar way, we can get the additional three derivatives

∂C ′

∂D
= C ′

D
〈ND(B1, B2, C,D)〉C ′ (12)

∂D′

∂C
= D′

C
〈NC(B1, B2, C,D)〉D′ (13)
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∂D′

∂D
= D′

D
〈ND(B1, B2, C,D)〉D′ . (14)

Consequently, calculating the above derivatives at the tricritical fixed point and solving the
eigenvalue equation (7) we obtain

λy = 〈NC〉
∗
C ′ + 〈ND〉∗D′

2
+
√( 〈NC〉∗C ′ − 〈ND〉∗D′

2

)2

+ 〈NC〉∗D′ 〈ND〉∗C ′ (15)

which means thatλy has been expressed in terms of quantities that are all measurable through
Monte Carlo simulations. Indeed, the quantities〈NC〉∗C ′ , 〈ND〉∗D′ , 〈NC〉∗D′ , and 〈ND〉∗C ′ can
be directly measured via Monte Carlo simulations. Similarly, it can be argued [22] that the
eigenvalueλν is equal to〈NB1〉∗B ′1 (or λν = 〈NB2〉∗B ′2). The pertinent Monte Carlo techniques
have been detailed in [22, 23], and we will not elaborate on them in this paper.

3. Results and discussion

The MCRG results for the evaluated averages〈NB1〉∗B ′1, 〈NB2〉∗B ′2, 〈NC〉∗C ′ , 〈ND〉∗D′ , 〈NC〉∗D′ ,
〈ND〉∗C ′ , and for the contact critical exponenty are given in table 1. The first four
results (26 b 6 5) for y should be compared with the corresponding exact RG results
yb=2 = 0.7491, yb=3 = 0.7246, yb=4 = 0.7117, andyb=5 = 0.7042 obtained in [17,18].

Table 1. The MCRG results for the measured averages〈NB1〉∗B ′1, 〈NB2〉∗B ′2, 〈NC〉∗C′ , 〈ND〉∗D′ ,
〈NC〉∗D′ , 〈ND〉∗C′ , and for the contact critical exponenty. Each entry of the table has been
obtained by performing one million of the requisite Monte Carlo simulations.

b 〈NB1〉∗B ′1 = 〈NB2〉∗B ′2 〈NC〉
∗
C′ 〈ND〉∗C′ 〈NC〉∗D′ 〈ND〉∗D′ y

2 2.3822± 0.0006 1.200± 0.003 0.946± 0.003 0.472± 0.001 1.293± 0.001 0.7493± 0.0067
3 3.991± 0.001 1.500± 0.003 1.647± 0.002 0.808± 0.002 1.641± 0.002 0.7247± 0.0031
4 5.807± 0.002 1.814± 0.004 1.280± 0.002 1.096± 0.002 2.019± 0.003 0.7123± 0.0024
5 7.793± 0.003 2.126± 0.003 2.889± 0.003 1.348± 0.003 2.408± 0.003 0.7041± 0.0017
6 9.937± 0.004 2.428± 0.004 3.479± 0.004 1.598± 0.003 2.817± 0.004 0.6999± 0.0016
7 12.232± 0.005 2.727± 0.005 4.055± 0.004 1.842± 0.004 3.220± 0.004 0.6962± 0.0015
8 14.673± 0.007 3.023± 0.005 4.645± 0.005 2.064± 0.004 3.641± 0.005 0.6936± 0.0013
9 17.232± 0.009 3.322± 0.005 5.192± 0.005 2.298± 0.004 4.036± 0.006 0.6911± 0.0012

10 19.905± 0.008 3.609± 0.006 5.757± 0.006 2.527± 0.005 4.475± 0.006 0.6902± 0.0011
11 22.74± 0.01 3.882± 0.006 6.320± 0.007 2.749± 0.005 4.915± 0.007 0.6887± 0.0011
12 25.64± 0.01 4.161± 0.007 6.917± 0.008 2.982± 0.006 5.360± 0.009 0.6888± 0.0011
13 28.67± 0.02 4.471± 0.008 7.430± 0.008 3.216± 0.006 5.784± 0.008 0.6879± 0.0011
15 35.02± 0.02 5.062± 0.008 8.540± 0.009 3.687± 0.007 6.659± 0.009 0.6875± 0.0009
17 41.79± 0.02 5.559± 0.007 9.651± 0.008 4.104± 0.006 7.536± 0.008 0.6855± 0.0007
20 52.72± 0.02 6.39± 0.01 11.23± 0.01 4.824± 0.009 8.91± 0.01 0.6850± 0.0009
22 60.30± 0.06 6.94± 0.02 12.28± 0.02 5.26± 0.02 9.75± 0.02 0.6839± 0.0015
26 76.68± 0.03 8.08± 0.01 14.45± 0.02 6.19± 0.01 11.54± 0.02 0.6836± 0.0008
30 94.23± 0.06 9.13± 0.02 16.51± 0.02 7.15± 0.01 13.34± 0.02 0.6830± 0.0008
35 117.4± 0.1 10.39± 0.02 19.16± 0.02 8.18± 0.02 15.56± 0.03 0.6817± 0.0008
40 142.9± 0.2 11.70± 0.03 21.81± 0.04 9.28± 0.03 17.79± 0.05 0.6807± 0.0013
50 197.1± 0.3 14.25± 0.04 26.81± 0.05 11.50± 0.04 22.27± 0.06 0.6797± 0.0012
60 257.1± 0.4 16.70± 0.08 31.52± 0.08 13.73± 0.07 26.57± 0.09 0.6778± 0.0016
70 321.9± 0.3 19.11± 0.08 36.61± 0.07 15.88± 0.06 31.01± 0.08 0.6771± 0.0012
80 390± 1 21.3± 0.1 41.4± 0.2 17.9± 0.1 35.5± 0.2 0.6762± 0.0022

100 539.5± 0.4 26.1± 0.1 50.54± 0.09 22.2± 0.1 43.2± 0.1 0.6735± 0.0011
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Thus, one can see that the MCRG results deviate by at most 0.07% from the exact RG
findings, which is an exceptionally good agreement between the two (Monte Carlo and
exact) approaches to solving the problem and thereby provides reliance on the accuracy of
the MCRG results for largerb.

In figure 3 we depict our MCRG findings for the critical exponenty of the SG family of
fractals as a function of 1/b. In this figure, we have also graphically presented (full curve)
the finite-size scaling formula for the same critical exponent

yKS = 2− νdf (16)

proposed in [18]. It follows from both the MCRG method and the finite-size scaling
approach thaty is a monotonically decreasing function ofb, which means that the number
of polymer contacts (crossings of the SAW paths) decreases with an increase in the
homogeneous patches that comprise the SG fractals. We argue that in the region ofb

under study the behaviour ofy is more accurately described by the MCRG findings than
by the finite-size scaling formula (16). This argument springs from the fact that the MCRG
results are in excellent agreement with the known exact RG results and from the fact that
(16) is intrinsically a very approximate formula for finiteb. Indeed, numerical analysis
shows that, beginning with the fractal parameterb = 26, deviations of the values predicted
by formula (16) from the MCRG findings monotonically decrease (from 5.02%, forb = 26,
to 4.43%, forb = 100). On the other hand,ν → 3/4 anddf → 2 whenb → ∞ and,
accordingly, the finite-size scaling formula (16) predicts that in this limity → 1/2. The
available MCRG results cannot assess the limiting value 1/2; however, one should expect
that an extension of the MCRG data (beyondb = 100) can verify the simple asymptotic
behaviour given by formula (16).

Figure 3. The MCRG data (full triangles) for the contact critical exponenty for the SG family
of fractals. The full curve represents the finite-size scaling formulayKS = 2− νdf for the same
critical exponent proposed by Kumar and Singh [18]. The error bars related to the MCRG data
are not depicted in the figure since in all cases studied they lie virtually within the corresponding
full triangles (this is particularly relevant in the region 26 b 6 5, where the largest deviation
from the known exact RG values is 0.07%). On these grounds, one may argue that the full
triangles represent the actual behaviour ofy, whereas the full curve represents an approximate
behaviour which should become correct in the limitb→∞.
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In conclusion, we have demonstrated that the statistics of two mutually crossing SAWs
on the simple family of SG fractals can be rewardingly studied by the MCRG method.
In particular, the MCRG study of the contact critical exponenty revealed its interesting
behaviour as a function of the fractal scaling parameterb. For this reason, we argue for the
necessity of similar studies on families of more complex fractals.
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[22] Milo ševíc S andŽivi ć I 1991J. Phys. A: Math. Gen.24 L833
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